
     

Page 1 of 30 

How to set up uClinux for the 
Spartan 3E Starter kit 

 
By consultant Søren Hansen (soren.hansen@teknologisk.dk) 
Copyright © 2007 Danish Technological Institute 

Contents 
Preface..................................................................................................................................................1 
The Compiler tool chain ......................................................................................................................1 
Acquiring the uClinux distribution ......................................................................................................2 
The Hardware layout file “auto-config.in” ..........................................................................................2 
Distribution setup.................................................................................................................................2 

Setting the proper distribution .........................................................................................................3 
Customizing the kernel ....................................................................................................................4 
Customizing the User programmes................................................................................................13 

Building the image.............................................................................................................................25 
The Image itself .............................................................................................................................25 
Saving and retrieving a given setup ...............................................................................................27 

Adding a user application ..................................................................................................................28 
References..........................................................................................................................................30 
 

Preface 
This document describes in detail “howto” set up various options in uClinux, be they kernel or 
distribution options so that it is possible to configure and build an uClinux image which will run 
successfully on the FPGA in the Spartan-3E starter kit. 
 
Prior to using “howto”, an appropriate configuration for the chosen board must be performed. It 
includes a MicroBlaze 4.0 for the soft-core and is in fact the core on which to run uClinux Linux. 
Alternatively, a howto can be downloaded which describes such a configuration, and it is actually 
the configuration with which howto has been tested [HOWTO-1].  
 
To simplify the process, the document has been divided into different sections. Some may have 
completed them in advance and may thereby have enabled users to jump to the section or stage  
they wish to reach. 
 

The Compiler tool chain 
The first initiative is to acquire the compiler tool chain. It can be found at the Petalogix web site 
(http://www.petalogix.com/resources/downloads/mb-gcc) together with a simple instruction 
explaining how to set up the compiler for the environment. 
 



Page 2 of 30 

Acquiring the uClinux distribution 
The official uClinux web site is found at http://www.uclinux.org which also provides links to 
relevant information about distribution. Two different approaches can be pursued to acquire the 
distribution source. One is downloading a snapshot, the other is using cvs to download the current 
development version.  
 
It is also the fastest way to acquire the source for a full source snapshot: 
http://www.uclinux.org/pub/uClinux/dist/. 
 
Be prepared when using the cvs method - it takes a long time: 
cvs –d:pserver:anonymous@cvs.uclinux.org:/var/cvs login 
Press enter when prompted for a password. 
cvs –z3 –d:pserver:anonymous@cvs.uclinux.org:/var/cvs co uClinux-dist 
cvs –z3 –d:pserver:anonymous@cvs.uclinux.org:/var/cvs co uClinux-2.4.x 
Make a symbolic mapping uClinux-2.4.x as uClinux-dist/linux-2.4.x 
 
Note that the uClinux distribution used in this howto is the snapshot uclinux-dist-20060803. 
 

The Hardware layout file “auto-config.in” 
At this point the compiler has been set up, and the distribution is ready for configuration. However, 
a proper working auto-config.in is required before distribution options can be set satisfactorily. The 
file contains a description of hardware setup and layout and is imperative to the Linux kernel.  A 
proper working auto-config.in means the setup of HW as explained in [HOWTO-1]. 
 
The format of the auto-config.in file itself is the so-called DOS format and must be changed into 
UNIX format by using the command dos2unix1. The file is subsequently copied into the Linux 
kernel source tree to the following location: 
linux-2.4.x/arch/microblaze/platform/uclinux-auto 
We assume that the current path is the root of the distribution itself. 
Note that only linux-2.4.x is known to work. 
 

Distribution setup 
The next sections show the selected options for the setup which enables us to boot a Linux kernel 
on the Microblaze soft-core CPU in Spartan 3E FPGA. 
 
When showing the selected setup or options, different dialogs will appear. However, in order to 
reduce the number of dialogs shown, only dialogs containing setup options are included. As a 
result, some dialogs are not included in their full form. 
 
Finally it should be noted that the selected options are by no means a scientific choice, they are 
more a starting point to ensure a working system. The next step would therefore be to determine 
your particular needs and alter the appropriate options to ensure them. 

                                                 
1 If you do not have this command, you can write as follows: cat auto-config.in.org | tr –d ‘\r’ > auto-config.in 



Page 3 of 30 

Setting the proper distribution 

Intro 
In order to properly configure the distribution according to your preference, enter the distribution 
path and start the configuration process. This process can be initiated in three ways2; 
make config 
make menuconfig 
make xconfig 
The first approach is seldom used and is not recommendable as it utilizes a simplistic non-intuitive 
interface. The other two are good, the latter being the preferred one. It should be noted, however, 
that it requires X-Windows. 
 

Configuring 
 

 
 
In the main menu you have to enter both the Vendor/Product and the Kernel/Library/etc submenu 
once you have configured them accordingly. “Save and Exit”. 

Vendor/Product selection 
 

 
 
In the Vendor/Product menu you have to change the Vendor to Xilinx and select uclinux- auto as 
shown below.   
                                                 
2 Note that all three config approaches achieve the same; it is just a question of usability. 



Page 4 of 30 

 
 

Kernel/Library/etc. 
 

 
 
In this uClinux distribution, only the 2.4.x kernel has support for Microblaze. Support for 
Microblaze in version 2.6.x should be released soon or may already be released. However, this has 
not been verified.  
 
Note also that we have to customize both the kernel and Vendor/User settings. 
 

Customizing the kernel 
A significant point is that no networking support is included. 



Page 5 of 30 

Code maturity level 
 

 
 
Normally you just say yes.  
 
 

Loadable module support 
 

 
 
Including loadable module support makes it possible to load modules into a running kernel. It is not 
an important feature for our test and has therefore been left out. You may want to enable it. 
 



Page 6 of 30 

Processor type and features 
 

 
 
The “platform” option has to be uclinux-auto. In order to ensure interaction with the running 



Page 7 of 30 

system, “Console on UARTLITE”3 has to be enabled as this option ensures and configures the 
kernel to create a device whereto stdout is pointing. 
 

General setup 
 

 
No comments. 
 

                                                 
3 This is assuming that the option is available. In the uClinux distribution snapshot from 20060511 this was not the 
case. 



Page 8 of 30 

Memory Technology Devices (MTD) 
 

 
No comments. 



Page 9 of 30 

RAM/ROM/Flash chip drivers 
 

 
No comments. 
 



Page 10 of 30 

Mapping drivers for chip access 
 

 
No comments. 



Page 11 of 30 

Block devices 
 

 
No comments. 



Page 12 of 30 

File systems 
 

 
No comments. 

Kernel hacking 
 

 
No comments. 



Page 13 of 30 

Library routines 
 

 
No comments. 
 
When done: “save and exit”. 
 

Customizing the User programmes 
When the important changes to the kernel have been carried out, we finally have to modify certain 
options for the User programmes. 
 
In the process of inspecting and configuring these options, you will observe that several 
programmes can be found both in Busybox menu and in the scatter in the other menus. Some 
preliminary experience resulted in programmes unable to compile if they were not Busybox 
programmes. The question is therefore which context is the most appropriate and why? This has not 
been ascertained at this point in time. 



Page 14 of 30 

Core application 

 
 
When inspecting the default options set for this category, it was determined by trial and error that it 
is not possible to have both the options “agetty4” and “enable console shell”. You must choose one 
or the other but not both. Also note that the option “login” is necessary if “agetty” should work. 

                                                 
4 Serial console support 



Page 15 of 30 

 
No comments. 



Page 16 of 30 

Library Configuration 
 

 
No comments. 
 
 

Flash Tools 
 

 
No comments. 
 



Page 17 of 30 

 
 
As far as I can determine, MTD utilities should be enabled in order to activate flatfsd5. It has, 
however, not been examined thoroughly. 

                                                 
5 Programme enabling to write configuration smoothly to flash[FLASH] 



Page 18 of 30 

Filesystem Applications 
 

 
No comments. 



Page 19 of 30 

Miscellaneous Applications 
 

 
No comments. 
 
 

 
No comments. 
 



Page 20 of 30 

 
No comments. 
 



Page 21 of 30 

Busybox 
 

 
 
This option has to be enabled to enable Busybox.  
 

 
No comments. 
 
 



Page 22 of 30 

 
No comments. 
 
 

 
No comments. 
 
 

 
No comments. 



Page 23 of 30 

 
 

 
No comments. 
 
 

 
No comments. 



Page 24 of 30 

 
 

 
No comments. 
 



Page 25 of 30 

 
No comments. 
 
 

 
No comments. 
 
 

Building the image 
The Image itself 
At this point we are ready to make the image itself. It is a dual phase procedure involving the 
execution of two different commands. 
The first checks and creates dependencies:  
make dep6 
The second builds the kernel along with the selected programmes and libraries: 
make all  
If the make process is successful, you can find the image in the directory “images” with the name 
image.bin. The define appended ensures that the created image is not copied to /tftpboot. 
 

                                                 
6 It is assumed that the current path is the root path of the uClinux distribution. 



Page 26 of 30 

Common errors 

Compilation failure due to missing zlib.h  
Where: 
This is typically seen when compiling cramfs. 
Solution: 
For some unknown reason, the uClinux distribution depends on a file which is not within itself. 
This is obviously not a sound approach. Until the problem is solved it can be circumvented by 
installing a package onto your Linux distribution. For Debian and Ubuntu, the package in question 
is zlib1g-dev.  

Error, cannot copy image to /tftboot 
Where: 
Last lines of the distribution compilation. 
Solution: 
There are two solutions; in the event there is a desire to have the image copied to tftpboot, it is then 
a simple matter of creating the directory in question. However, if this is not the case, simply append 
“NO_BUILD_INTO_TFTPBOOT=n” to “make all”. The compilation command thus becomes: 
make all NO_BUILD_INTO_TFTPBOOT=n 

Network dependent programmes and related problems 
Where: 
In this howto where network support has been removed from the kernel, certain network dependent 
programmes failed to compile. 
Solution: 
In this situation it was a question of determining in which context the errors were to be found and 
then remove them from the compilation.  
The important lesson is that there may be dependencies which for no obvious reason at all result in 
programmes failing to compile but are relatively easy to find. 
 

Downloading and booting the image 
The “normal” approach is carried out via the Xilinx Platform Studio, see [HOWTO-1] for a 
description.  

Accelerated version 
In order to speed up the process of downloading bit, image and starting the application, the 
following scripts can be applied. Simply copy these lines into two separate files where one is a 
batch file and the other is tcl7 file. These files should then be placed in the root of your project. 
 
The batch file: 

echo "Downloading bit" 
xbash -q -c "cd /cygdrive/z/DemoKit/demo_uc_1/; /usr/bin/make -f system.make 
download; exit;" 
echo "Downloading image and starting it" 
xmd -tcl run.tcl  

                                                 
7 Assuming that Xilinx Platform Studio is installed with tcl support which is presumed to be standard. 



Page 27 of 30 

 
The run.tcl file: 

xload xmp system.xmp 
connect mb mdm 
stop 
rst 
dow -data images/image.bin 0x22000000 
con 0x22000000 

 
The above 0x22000000 is assuming that the start address of your image is placed here. 

Saving and retrieving a given setup 

Saving the current setup 
Once you have configured your system and spent considerable time on making it work the way you 
want, the need to save the system configuration arises. 
The whole configuration of a given image is placed in five different files8: 

• linux-2.4.x/arch/microblaze/platform/uclinux-auto/auto-config.in 
o The HW configuration 

• .config 
o The configuration describing the overall hardware layout. Addresses, port etc. 

• linux-2.4.x/.config 
o The kernel configuration file 

• config/.config 
o The Vendor/User setting configuration file. Note also that when you add your own 

files, the option for activating them is found in this file. 
• uClib/.config 

o Saving the last file is deemed optional in most cases. 
After copying these files, you can safely delete the rest or simply add them to your file versioning 
system of your choice.  
 

Retrieving a setup 
At some point you may wish to create the image again or to adjust some simple options to suite new 
needs.  
To recreate the image and files saved in the previous section, the following awkward steps must be 
taken in sequence. 
 

1. First change directory to the distribution. 
2. Run cmd: “make mrproper” 

a. Cleans up the distribution, everything is cleaned. 
3. Copy distribution configuration to ./.config 
4. Run cmd: ./config/setconfig defaults 

a. Sets options to some predefined value. In some instances, however, user intervention 
is required and a suitable choice would be to press enter. 

                                                 
8 It is assumed that the current path is the root path of the uClinux distribution. 



Page 28 of 30 

b. If you wish to speed things up, you can extend the command. The extended version 
just accepts everything, just like you would by pressing enter. 

i. Run cmd: “yes ””|./config/setconfig defaults” 
5. Overwrite Vendor/User settings config/.config file with your saved version. 
6. Overwrite the kernel configuration file linux-2.4.x/.config with your saved version. 
7. Overwrite uClibc/.config configuration file with your saved version. 
8. The next step is to inform the system that we wish to use an old version of the configuration 

files. This is done by running the command: “make oldconfig” 
a. Notice again that you “may” have to answer some questions. In the normal scenario 

they can just be answered by pressing the return button. 
b. Yet again the process can be accelerated. 

i. Run cmd: “yes ””| make oldconfig” 
9. Finally we are ready to start building the kernel. As explained earlier, it is performed firstly 

by running “make dep” and lastly by running “make all” which creates the image. 
10. The image can now be copied to your Xilinx project in the project  

 

Adding a user application 
Certain steps must be taken in the event a user application is developed and should run on the target 
platform. Below is shown the entire howto with explanations of how it is done. The text has been 
pasted from the file Documentation/Adding-User-Apps-HOWTO which you can find in your 
distribution. 
 
Adding User Applications to the uClinux Distribution 
---------------------------------------------------- 
 
D. P. Siddons 
9th Dec. 2001 
 
 
This document gives simple instructions for adding a user-written application to 
the uClinux configuration system. Entries must be added to three files, and an 
apropriate Makefile must exist in the user application source directory, which 
must be put in user (all directory names here are given relative to the uClinux 
top directory. In my system this is /home/peter/uClinux-dist).   
 
Files to edit: 
 
user/Makefile 
   Add a line to the file like 
    
   dir_$(CONFIG_USER_FOO_FOO)            += foo 
    
   This adds the directory 'foo' to the list of directories to be built. I added 
   mine in alphabetical order. The order doesn't seem to matter. 
   
config/Configure.help 
   This file contains the text which is presented on request during the 
config. 
   Add a block like 
    
   CONFIG_USER_FOO_FOO 
     This program does fooey things to your bars. 



Page 29 of 30 

    
   The text must be indented two spaces, and there must be no empty lines. Lines 
   should be <70 chars long. 
 
config/config.in: 
   Add a line in the apropriate menu section (i.e. in the program group you want 
   your app to show up in during 'make config'; I used 'misc'), like  
    
   bool 'foo'           CONFIG_USER_FOO_FOO 
    
   The repetition of FOO allows for directories which contain multiple 
   executables. Thus, if the user directory 'foo' contained code to make 'foo' 
   and 'bar', each gets its own config line if an additional entry is made like 
    
   bool 'bar'           CONFIG_USER_FOO_BAR   
    
 
Next, there needs to be a proper /user/foo/Makefile. The Makefile should follow 
the following template: 
 
   --------------------------------------------    
   EXEC = foo 
   OBJS = foo.o 
 
   all: $(EXEC) 
 
   $(EXEC): $(OBJS) 
        $(CC) $(LDFLAGS) -o $@ $(OBJS) $(LDLIBS) 
 
   romfs: 
        $(ROMFSINST)    /bin/$(EXEC) 
 
   clean: 
        -rm -f $(EXEC) *.elf *.gdb *.o 
   --------------------------------------------- 
    
   If more than one executable is built in the foo directory, as above, then the 
   Makefile should look like 
    
   ------------------------------------------------------------ 
   EXECS = foo bar 
   OBJS = foo.o bar.o 
 
   all: $(EXECS) 
 
   $(EXECS): $(OBJS) 
        $(CC) $(LDFLAGS) -o $@ $@.o $(LDLIBS) 
 
   romfs: 
        $(ROMFSINST) -e CONFIG_USER_FOO_FOO             /bin/foo 
        $(ROMFSINST) -e CONFIG_USER_FOO_BAR             /bin/bar 
   -------------------------------------------------------------- 
    
   More complex makefiles are of course possible. The reader is encouraged to 
   browse the user tree for examples. 
    
   When all this is set up, doing the standard 'make xconfig; make dep; make' 
   should build the app and install it in romfs and hence in the target system 
   image.bin. 



Page 30 of 30 

 
 

References 
[HOWTO-1] “Howto create a project for a simple uClinux ready MicroBlaze 4.0 design on XPS 
(Xilinx Platform Studio) for Spartan-3E” http://www.teknologisk.dk/20356 
 
[FLASH] uCdot - “Using flatfsd to save persistent state” 
http://www.ucdot.org/article.pl?sid=04/01/18/2312200&mode=thread 
 


